Dynamic programming for infinite horizon boundary control problems of PDE’s with age structure

نویسندگان

  • Silvia Faggian
  • Fausto Gozzi
چکیده

We develop the dynamic programming approach for a family of infinite horizon boundary control problems with linear state equation and convex cost. We prove that the value function of the problem is the unique regular solution of the associated stationary Hamilton–Jacobi–Bellman equation and use this to prove existence and uniqueness of feedback controls. The idea of studying this kind of problem comes from economic applications, in particular from models of optimal investment with vintage capital. Such family of problems has already been studied in the finite horizon case in [24][25]. The infinite horizon case is more difficult to treat and it is more interesting from the point of view of economic applications, where what mainly matters is the behavior of optimal trajectories and controls in the long run. The study of infinite horizon is here performed through a nontrivial limiting procedure from the corresponding finite horizon problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Faggian Silvia and Gozzi Fausto Optimal investment models with vintage capital: Dynamic Programming approach

The Dynamic Programming approach for a family of optimal investment models with vintage capital is here developed. The problem falls into the class of infinite horizon optimal control problems of PDE’s with age structure that have been studied in various papers (see e.g. [11, 12], [30, 32]) either in cases when explicit solutions can be found or using Maximum Principle techniques. The problem i...

متن کامل

Solving infinite horizon optimal control problems of nonlinear interconnected large-scale dynamic systems via a Haar wavelet collocation scheme

We consider an approximation scheme using Haar wavelets for solving a class of infinite horizon optimal control problems (OCP's) of nonlinear interconnected large-scale dynamic systems. A computational method based on Haar wavelets in the time-domain is proposed for solving the optimal control problem. Haar wavelets integral operational matrix and direct collocation method are utilized to find ...

متن کامل

Maximum Principle for Linear-convex Boundary Control Problems Applied to Optimal Investment with Vintage Capital

Abstract. The paper concerns the study of the Pontryagin Maximum Principle for an infinite dimensional and infinite horizon boundary control problem for linear partial differential equations. The optimal control model has already been studied both in finite and infinite horizon with Dynamic Programming methods in a series of papers by the same author et al. [26, 27, 28, 29, 30]. Necessary and s...

متن کامل

A multi-stage stochastic programming for condition-based maintenance with proportional hazards model

Condition-Based Maintenance (CBM) optimization using Proportional Hazards Model (PHM) is a kind of maintenance optimization problem in which inspections of a system relevant to its failure rate depending on the age and value of covariates are performed in time intervals. The general approach for constructing a CBM based on PHM for a system is to minimize a long run average cost per unit of time...

متن کامل

A numerical approach for optimal control model of the convex semi-infinite programming

In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008